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Rosenfeld-Prigogine complementarity of descriptions in the context
of informational statistical thermodynamics

Roberto Luzzi, J. Galva˜o Ramos,* and Aurea R. Vasconcellos
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, Sa˜o Paulo, Brazil

~Received 29 July 1997!

Within the framework of informational statistical thermodynamics, we consider the case of a particular
dissipative dynamical system, namely, a system of harmonic oscillators weakly interacting with a thermal bath.
Informational entropy and informational-entropy production are obtained. In terms of them we derive the
information gain in alternative pictures and a Rosenfeld-like complementarity principle between microdescrip-
tion and macrodescription. This complementarity is related to a kind of measure of the incompleteness of both
descriptions and to Prigogine’s theory of irreversible processes. The fundamental role of the universal Boltz-
mann constant for the characterization of this complementarity is discussed.@S1063-651X~98!06501-5#

PACS number~s!: 05.70.Ln, 05.90.1m, 82.20.Db, 89.70.1c
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I. INTRODUCTION

The connection and interplay of the microscopic and m
roscopic levels of description in matter, that is, between m
chanics and thermodynamics, have been the object of dis
sion since the emergence of thermodynamics, as an offs
of the Industrial Revolution, in last century. In particula
Rosenfeld@1# has argued that in this case is at work a kind
logical relationship to which the name ofcomplementarity
may be applied. This was conjectured by Bohr@2#, and is
contained in a particular form in Prigogine’s work@3#. In
Rosenfeld’s words, it should characterize the mutual exc
siveness of the two descriptions: conditions allowing fo
complete microscopic mechanical description of a sys
exclude the possibility of applying to the system any of t
typical thermodynamic concepts; and, conversely, the m
roscopic description in terms of the latter requires conditio
of observation under which the mechanical parameters s
our control.

We consider here the ideas of Rosenfeld and Prigogin
the framework of an emerging theory, namely, the so-ca
informational statistical thermodynamics~IST for short!. It is
applied to the study of a particular system consisting into
assembly of two subsystems of linear oscillators in mut
interaction~it constitutes an excellent model for the descr
tion of particular sets of collective elementary excitations
solids like, for example, polaritons, magnetoplasma wav
etc.!.

IST ~sometimes also called information-theoretic therm
dynamics! was pioneered by Hobson@4#, sometime after the
publication of Jaynes’s seminal papers@5# on the foundations
of statistical mechanics on the basis of information the
~brief considerations and short historical notes on IST
given in Ref.@6#, and additional topics in Ref.@7#!. It may be
noted that, as thermostatics~thermodynamics of equilibrium
systems! has microscopic foundations provided by Gibb
equilibrium statistical mechanics~and then is referred a
Gibbs Thermostatics@8#!, IST ~a thermodynamics for irre
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versible processes! has its mechanical-statistical foundatio
in the statistical mechanics for nonequilibrium systems,
particular, the so-called nonequilibrium statistical opera
method ~NESOM for short, reviewed in Ref.@9#!, with
Zubarev and co-workers’ construction@10,11# apparently be-
ing the most concise, elegant, practical, and physically so
approach@12,13#.

In continuation, the method is applied to the particu
model system mentioned above, which admits exact s
tions, and for which particular thermodynamic aspects, in
context of IST, are obtained in order to used them to ch
acterize Rosenfeld’s arguments. We discuss this kind
complementarity principle, analyze its connection to the o
due to Prigogine, and give the form of a principle of incom
pleteness of description. In Sec. IV we present a critical d
cussion and some concluding remarks.

II. MODEL AND ITS DESCRIPTION IN IST

Consider the system composed by two subsystems of
monic oscillators, coupled through a particular interaction,
described by the Hamiltonian

Ĥ~ x̂,p̂;X̂,P̂!5Ĥ01~ x̂,p̂!1Ĥ02~X̂,P̂!1Ĥ8~ x̂,p̂,X̂,P̂!, ~1!

where x̂[ x̂1 ,...,x̂N and X̂[X̂1 ,...,X̂N , are the generalized
coordinates of the two types ofN andN8 oscillators, respec-
tively, andp̂ and P̂ are the corresponding sets of linear m
menta. In Eq.~1!, H01 andH02 are the Hamiltonians of the
free subsystems, namely,

Ĥ015(
j 51

N
1
2 ~ p̂ j

21v j
2x̂ j

2!, ~2a!

Ĥ025 (
m51

N8
1
2 ~ P̂m

2 1Vm
2 X̂m

2 ! ~2b!

andH8 is the interaction energy, which is taken in the for
of the bilinear interaction,
244 © 1998 The American Physical Society



n.

ys
b

at

S

nd
ta
s
o
e

th
m

th
te
r

a
n

e
bu

d
n

er

les
th
er

ce

is

al-

ot-
the

al
e,
own
y

of
re
as

s

lla-

n-

the
ve a
m

o

nc-

re-

les
he

p-
t

the

57 245ROSENFELD-PRIGOGINE COMPLEMENTARITY OF . . .
H85(
j ,m

G j mx̂ j X̂m , j 51,...,N;m51,...,N8, ~2c!

whereG stands for the coupling strength of the interactio
Given the Hamiltonian of Eq.~1! we can proceed to build

the informational mechanostatistical description of the s
tem in NESOM, a description which may be considered to
encompassed within the scope of Jaynes’s predictive st
tical mechanics@14# ~see Refs.@9–13#!, and which, as no-
ticed, provides the foundations of IST. We recall that the I
~or informational-statistical! entropy is given by

S̄~ t !52Tr$r~ t !ln r̄~ t,0!%[2Tr$r~ t !P~ t !ln r~ t !%,
~3!

wherer̄(t,0) is an auxiliary coarse-grained distribution, a
r(t) is the distribution that describes the macroscopic s
of the system and its evolution in nonequilibrium condition
The latter contains nonlinear, nonlocal in space, and mem
effects, and it is an operator uniquely defined by the form
and the system’s Hamiltonian@9–13#. Moreover,P(t) is a
time-dependent projection operator, which projects on
so-called informational subspace composed by the dyna
cal variables used for the description of the system@9,15#.

The informational entropy of Eq.~3! increases in time,
which is a consequence of the loss of information in
interpretation of the measurements performed on the sys
@9,15,16#. According to the methodr̄(t,0) is a superoperato
depending on a set of basic dynamical variables$P̂j%, with
j 51,...,n, chosen to provide for the sought-after statistic
description of the system@9–13#, and also depending on a
accompanying set of Lagrange multipliers$F j (t)
5kB

21Fj (t)%, wherekB is a Boltzmann constant. It takes th
form of an instantaneous generalized Gibbsian-like distri
tion given by@9–13#

r̄~ t,0!5expH 2f~ t !2(
j 51

n

F j~ t !P̂j J , ~4!

wheref, playing the role of the logarithm of a generalize
nonequilibrium partition function, ensures its normalizatio
Moreover, the Lagrange multipliers~or intensive thermody-
namic variables! satisfy that

Fj~ t !5kBdS̄~ t !/dQj~ t ![Fj$Q1~ t !,...,Qn~ t !%, ~5a!

whered stands for functional differential, and they are det
mined by the constraints that

Qj~ t !5Tr$P̂jr~ t !%[Qj$Fj~ t !,...,Fn~ t !%. ~5b!

The set$Qj (t)% is composed by the macroscopic variab
that describe the nonequilibrium thermodynamic state of
system, with their irreversible evolution governed by gen
alized nonlinear quantum transport equations of the type

d

dt
Qj~ t !5TrH 1

i\
@ P̂j ,H#r~ t !J [F j$Q1~ t !,...,Qn~ t !;t%,

~6!

where the explicit form of the nonlinear, nonlocal in spa
and memory-dependent functionalsF j is given elsewhere
@9–11,17,18#. Although the term after the first equal sign
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dependent, throughr, on the set$F j%, Eq. ~5a! allows us to
close the equations in terms of variablesQj .

Two other relevant results are that the information
entropy production is given by@9–11,15#,

s̄~ t !5dS̄~ t !/dt5(
j 51

n

F j~ t !@dQj~ t !/dt#, ~7!

and a particularly well-defined relationship between the ro
mean-square deviations of the macrovariables and of
Lagrange multipliers is satisfied, namely,

@D2Fj~ t !#1/2@D2Qj~ t !#1/25kB@Gj j ~ t !#1/2, ~8!

whereG is a quantity equal to the product of the diagon
element j of the correlation matrix and that of its invers
and equal to 1 in the case of uncorrelated variables, as sh
in Appendix A. Equation~8! resembles a kind of uncertaint
principle in the way proposed by Rosenfeld@1#, which is
valid for arbitrarily far-from-equilibrium conditions and at
any time during the evolution of the dissipative macrostate
the system. It ought to be noticed that the root-mean-squa
deviationsD2Fj (t) are to be understood in the same sense
is done in equilibrium, what is described in Ref.@19#; on the
other hand, theD2Qj (t) represent the statistical fluctuation
of the macrovariables.

Let us return to the specific case of the system of osci
tors characterized by the Hamiltonian of Eq.~1!. We con-
sider two different statistical descriptions of it: First, we co
sider the description in terms of

~ I! $Ĥ01,Ĥ02%, $b1I~ t !;b2I~ t !%, $E1~ t !;E2~ t !%, ~9!

which consists of collective variables corresponding to
energies of each of the subsystems; that is, here we ha
kind of canonical description of each one in nonequilibriu
conditions, with the auxiliary~coarse-grained! statistical
probability distribution given by@cf. Eq. ~4!#

r̄ I~ t,0!5exp$2f I~ t !2b1I~ t !Ĥ012b2I~ t !Ĥ02%. ~10!

Let us consider the equations of evolution for the tw
basic variables, that is, the equations of the type of Eqs.~6!
for Q1(t)[E1(t) andQ2(t)[E2(t) in this case. As already
noted, the right-hand side of these equations is in fact a fu
tional of the two Lagrange multipliersb1I(t) andb2I(t), on
which r(t) depends. But these Lagrange multipliers are
lated to the basic variables through Eqs.~5!, which in this
case, and in a classical-mechanical approach, are

E1~ t !5Tr$Ĥ01r~ t !%5Nb1I
21~ t !, ~11a!

E2~ t !5Tr$Ĥ02r~ t !%5N8b2I
21~ t !. ~11b!

Therefore, the equations of evolution for the basic variab
can be transformed into equations of evolution for t
Lagrange parametersb1I(t) and b2I(t). This is done using
the nonlinear transport theory that the method provides@9–
11,17,18#, but resorting to the so-called second order a
proximation in relaxation theory@17#, that is, the one tha
keeps the interaction up to second order~binary collisions!,
restricted then to weak interactions. Moreover, we take
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limit of N8 going to infinity, that is, the second system
oscillators plays the role of an ideal reservoir at, say, te
peratureT0 . The resulting system of equations of evolutio
is solved to finally obtain~see Appendix B!, after introduc-
ing the definitions b1I

21(t)5kBT1I* (t) and b2I
21(t)

5kBT2I* (t), with bothT* playing the role of nonequilibrium
temperature-like variables~usually referred to as quasitem
peratures@20#!, that

T1I* ~ t !5T`1AIe
2t/t, T2I* ~ t !5T`5T0 , ~12!

with the IST entropy production being

s̄ I~ t !5Nt21@T1I* ~ t !2T2I* ~ t !#2/T1I* ~ t !T2I* ~ t !, ~13!

whereT` ~corresponding to the temperature when final th
mal equilibrium is achieved; that is, fort→` the tempera-
ture of the system and reservoir coincide!, andAI are fixed
by the initial conditions. In Eqs.~12!, t is a relaxation time
given by

1

t
5

1

N (
j

1

t j
5

1

N (
j

~p/2!(
m

~ uG j mu2/v j
2!d~v j2Qm!.

~14!

The entropy production of Eq.~13! is positive, and become
null when final equilibrium is achieved~T1I* 5T2I* 5T`5T0

for t→`!.
Consider now the description

~ II ! $Ĥ10,x̂,p̂;Ĥ20%;$b1II ~ t !,wII ~ t !,gII ~ t !;b2II ~ t !%;

$E1~ t !,x̄~ t !,p̄~ t !;E2~ t !%, ~15!

which is a mixed one, involving the microscopic individu
coordinates and momenta of the oscillators in subsyste
and the collective variables energy@as in ~I!; cf. Eq. ~9!#.
Therefore, the coarse-grained auxiliary distribution in t
case is@cf. Eq. ~4!#

r̄~ t,0!5expH 2f II ~ t !2b1II ~ t !Ĥ102b2II ~ t !Ĥ20

2(
j 51

N

@w j I I ~ t !x̂ j1g j I I ~ t ! p̂ j #J , ~16!

and, whileE2(t) is again the one given in Eq.~11b!, we now
have that

E1~ t !5Nb1II
21~ t !1 1

2 (
j 51

N

b1II
2 ~ t !@g j I I

2 ~ t !1v j
2w j I I

2 ~ t !#,

~17a!

v j
2x̄ j~ t !52b1II

21w j I I ~ t !, ~17b!

p̄ j52b1II
21~ t !g j I I ~ t !. ~17c!

Proceeding as in the previous case~I! ~see Appendix B!, we
derive and solve the equations of evolution to find that

T1II* ~ t !5T`1AII e
2t/t, ~18a!
-

-

1

s

T2II* ~ t !5T`5T0 , ~18b!

x̄ j~ t !5~aj /v j !exp~2t/2t j !sin~v j t1u j !, ~18c!

p̄ j~ t !52 x̄~ t !/2t j1aj exp~2t/2t j !cos~v j t1u j !,
~18d!

ŝ II ~ t !5Nt21$@T1II* ~ t !2T2II* ~ t !#2/T1II* ~ t !T2II* ~ t !%

1@ f ~ t !/kBT2II* ~ t !#, ~19!

whereaj andu j are determined by the initial conditions

f ~ t !5(
j

@~v j
2/t j !x̄ j

2~ t !1L j x̄ j~ t ! p̄ j~ t !#, ~20a!

t j is defined in Eq.~14!, and

L j5(
m

~ uG j mu2!~Vm
2 2v j

2!21. ~20b!

We recall that subsystem 2 acts as an ideal reservoir
constant temperatureT05T2II* (0)5T` .

Next we compare both descriptions~I! and ~II ! @cf. Eqs.
~10! and~16!# using, evidently, the same initial conditions
both cases. We fix the initial energies of both system
which, using Eqs.~11! and ~17!, can be written in the form

~I! DE5E1~0!2NkBT`5dq1I , ~21a!

dq1I5NkB@T1I* ~0!2T`#5NkBAI , ~21b!

~II ! DE5E1~0!2NkBT`5dq1II 1dw1II , ~21c!

dw1II 5(
j

~aj
2/2!, ~21d!

dq1II 5NkB@T1II* ~0!2T`#5NkBAII , ~21e!

we recall that the energy of the reservoirE2 is fixed by its
temperature,T05T` , and for the sake of simplicity, withou
losing generality, we have chosen the initial conditio
x̄ j (0)50 and p̄ j (0)5aj . Equations~21! provide the initial
energy in excess of the values in final equilibrium,DE,
which is composed of two terms: one,dq, which we call a
‘‘heatlike contribution,’’ and the other,dw, dubbed a
‘‘worklike contribution.’’

We proceed to compare both descriptions for which p
pose, first, we resort to a quantum description—more app
priate for a full analysis in what follows~see Appendix C!—
and, second, we define what we call anorder parameter
given by

D~ t !5@S̄1~ t !2S̄II ~ t !#/S̄I~ t !5K~ t !/S̄I~ t !, ~22!

where we have introduced

K~ t !52Tr$r̄ II ~ t,0!@ ln r̄ I~ t,0!2 ln r̄ II ~ t,0!#%, ~23!

namely, an analog of Kullback’s information measure@21#,
which is interpreted as a measure of the gain in informat
in the description usingr̄ II in comparison with the one usin
r̄1 . In Fig. 1 we show the evolution ofD for the choiceT0
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5300 K; DE50.1NkBT0 , dw1II 50.1DE, and all \v j
equal to 35 meV. The IST entropy in description~II ! is
smaller than in description~I!, as expected, since the form
carries more information, but they asymptotically coinci
once final thermodynamic equilibrium is achieved, as
should. Further considerations on the informational entro
and its production are given in Refs.@9,15,16#, and a
geometrical-topological discussion of the method is due
Ref. @22#.

III. ROSENFELD-PRIGOGINE COMPLEMENTARITY
IN IST

Taking into account the results of Sec. II together with t
relationship of Eq.~8!, we explore the role of Boltzmann
constant resorting to, at a given time~say the initial onet
50!, introducing in the expression forD of Eq. ~22! a scal-
ing j of the Boltzmann constant~writting jkB!, with j vary-
ing from zero to infinity. The resultingj-dependentD~0uj! is
shown in Fig. 2. It is verified that 0<D<1, with D going to
one for j going to zero andD going to zero forj going to
infinity, implying in maximum information gain and no in
formation gain at all, respectively. For the numbers us
~and we recall thatdw1II is 10% of the input of exciting
energyDE, while dq1II is 90% ofDE!, for j51, that is the
real case in nature forkB58.61731025 eV/K, the informa-
tion gain is roughly 1% ofS̄I . Moreover, it follows that for

FIG. 1. Evolution in time of the order parameter of Eq.~22!.

FIG. 2. Dependence of the order parameter of Eq.~22! for t
50 on a scaled Boltzmann constant.
t
y

o

e

d

j small the heatlike contributiondq1II goes to zero, while,
the worklike contributiondw1II acquires the maximum valu
DE, which can be interpreted as meaning that one can o
pump mechanical work on the system, and that no heatin
possible. For nonzero value ofj both contributions are
present, and forj of the order and larger than 0.5, we obta
that they very approximately maintain the distribution
90% and 10% of the pumped energyDE, for dq1II and
dw1II respectively.

We may summarize these results as implying that fo
‘‘small Boltzmann constant’’ a mechanical-like descriptio
predominates, while for the universal value of the Boltzma
constant, and also for ‘‘larger values of it,’’ both heatlike a
worklike contributions can be pumped simultaneously on
system. Furthermore, in the former case, the informatio
entropyS̄II tends to zero, in accord with the fact of havin
what can be considered as a purely mechanical descrip
and the informational-entropy production vanishes. Then
may say that in such a limiting situation~‘‘null Boltzmann
constant’’! no statistical thermodynamics exists, quite
agreement with Jaynes’s statements, in his already clas
paper of 1965@23# ~see also Ref.@24#!.

On the other hand, to make contact with Prigogine’s a
proach, we introduce in IST the entropy operator

S~ t !5kBSC ~ t !52kBP~ t !ln r~ t !52F0~ t !2(
j 51

n

Fj~ t !P̂j ,

~24!

whereF05kBf and P(t) is the time-dependent projectio
operator present in Eq.~3! and defined elsewhere@9# ~which
projects at each timet over the subspace defined by the ba
set of dynamical variables, the so-called informational s
space; see also Ref.@22#!. The statistical average withr(t)
of this entropy operator is the IST entropy of Eq.~3!. Fur-
thermore, if we indicate byL the Liouville operator of the
system, then it follows that

kBsC ~ t ![ iLS~ t !5(
j
Fj~ t !iLPj , ~25!

which introduces the entropy production operator,sC whose
average is the IST entropy production of Eq.~7!. The con-
nection of the entropy operator of Eq.~24! and the one in-
troduced in a general form by Prigogine is made through
identification 2kBP(t)lnr(t)5Mr(t), with operatorM de-
fined in Ref.@3#. Let us take the commutator of the Liouvill
operator and the entropy operator, and next the average v
of it, to obtain that

Tr$@ iL,Ŝ~ t !#r~ t !%5
1

i\
Tr$@ Ŝ,Ĥ#2Ŝ @r,Ĥ#%

5Tr$r iLŜ%5kBs̄~ t !. ~26!

According to Prigogine@3#, the non-null commutator@ iL,Ŝ#
in this Eq. ~26! leads to acomplementarity principlethat
implies that either we consider eigenfunctions of the Lio
ville operator to determine the mechanical evolution of t
system, or we consider eigenfunctions of the entropy ope
tor @25#, but they do not have common eigenfunctions.
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IV. CONCLUDING REMARKS

We can say that the results presented above point to
plausibility that the incommensurability of the Liouville op
erator~mechanical level! and the entropy operator~thermo-
dynamical level! implies a kind of uncertainty relation, or
more appropriately, a kind ofmeasure of incompleteness
descriptions: A simultaneous determination of the inform
tional content of the solutions of the equations of evolut
of the macrostate and a detailed microscopic position
~point in phase space or quantum state! is not possible. This
fact is governed by the presence of the Boltzmann const
as quantified in Eqs.~8! and~26! ~see Fig. 2, where the rol
of kB—scaled by the factorj—in characterizing this comple
mentarity principle is evidenced!.

It has been argued@26# thatkB introduces an influence o
the microscopic level of the experiment at the macrosco
level. Heat and work are considered as intrinsic propertie
matter, and heat flux as a movement of ‘‘thermal charge
under the action of a gradient of temperature. In this con
kB may then be—as reinforced by the results in this pape
considered as a ‘‘quantum of thermal charge,’’ namely,
minor amount of heat to be displaced by unit of temperat
gradient. It wouldrepresent the unit of measure of the u
certainty of the description of the mechanical state on
basis of the given reduced macroscopic characterization
the system. This point has also been stressed by Tisza@8#.
Hence it may be argued that, as Planck’s constant define
interaction between the quantum system and the meas
ment device as nondecomposable, Boltzmann’s constant
defines the microscopic and macroscopic descriptions
nondecomposable@27#. In this case, we reiterate, there is
work a kind of logical relationship to which the name
complementarity—as an extension of Bohr’s ideas—may
applied@1#: As shown~and we stress that this is in the real
of IST! it can be characterized by a kind of uncertainty re
tion @cf. Eq. ~8!# and the interplay of two noncommutativ
operators@cf. Eq. ~26!#, and it becomes tempting, or, bette
conjecturable, to consider the Boltzmann constant as pla
the role of an elementary quantum of heat transfer, and b
responsible for the necessary duality of descriptions.
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APPENDIX A: CORRELATION MATRIX
AND AN UNCERTAINTYLIKE LAW

Givenf(t) andS̄(t) of Eqs.~3! and~4!, their differential
coefficients giveQj (t) andF j (t); that is @9–11#,

Qj~ t !52df~ t !/dF j~ t !, F j~ t !5dS̄~ t !/dQj~ t !,
~A1!

whered stands for functional derivative@28#. Moreover, the
second order functional derivatives allow us to introduce
he
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fluctuations of the basic variables, also providing for a ge
eralization of Maxwell’s relations to nonequilibrium situa
tions, namely,

d2f~ t !/dF j~ t !dFk~ t ![Cjk~ t !

52dQj~ t !/dFk~ t !52dQk~ t !/dF j~ t !

5E dGD P̂j~ t !D P̂k~ t !r̄~ t,0!, ~A2!

where

D P̂j~ t !5 P̂j2Tr$P̂j r̄~ t,0!%5 P̂j2Qj~ t !, ~A3!

andCjk(t) is the matrix of correlations of the basic dynam
cal variables, which is symmetric, namely,Cjk5Ck j , and, as
noted, is a generalization to the nonequilibrium situation~in
the context of IST! of Maxwell’s relations in thermostatics
Furthermore@9–11#,

d2S̄~ t !/dQj~ t !dQk~ t !5dF j~ t !/dQk~ t !5dFk~ t !/dQj~ t !
~A4!

and

(
l

d2f~ t !

dF j~ t !dF l ~ t !

d2S̄~ t !

dQl ~ t !dQk~ t !
52(

l

dQj~ t !

dF l ~ t !

dFl~ t !

dQk~ t !

52d jk , ~A5!

and then the second differential coefficients of the inform
tional entropy are the elements of minus the inverseĈ(21) of
the matrix of correlationsĈ. Let us next introduce the alter
native definitions~thus introducing Boltzmann constant!

kBS̄~ t !5S~ t !, Fj~ t !5kBF j~ t !5dS~ t !/dQj~ t !.
~A5!

The fluctuation of the informational entropy is

D2S~ t !5(
j ,k

dS~ t !

dQj~ t !

dS~ t !

dQj~ t !
Cjk~ t !

5(
j ,k

Cjk~ t !Fj~ t !Fk~ t !, ~A6!

and that of the intensive variablesF are

D2Fj~ t !5(
k,l

dF j~ t !

dQk~ t !

dF j~ t !

dQl ~ t !
Ckl ~ t !

5kB
2(

k,l
Cjk

~21!~ t !Cj l
~21!~ t !Ckl ~ t !5kB

2Cj j
~21!~ t !.

~A7!

Therefore,

D2Qj~ t !D2Fj~ t !5kB
2Gj j ~ t !, ~A8!
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Gj j ~ t !5Cj j ~ t !Cj j
~21!~ t !. ~A9!

In the particular case when the basic variables are unco
lated, viz. Cjk50 for j Þk, as in the case of equilibrium
then

D2Qj~ t !D2Fj~ t !5kB
2 ~A10!

and

@D2Qj~ t !#1/2@D2Fj~ t !#1/25kB . ~A11!

Equations~A8! and ~A11! have a similarity with an uncer
tainty law, as is the case in quantum mechanics for the c
of two noncommuting Hermitian operators.

APPENDIX B: EQUATIONS OF MOTION

1. First description †cf. Eq. „9…‡

In the Markovian limit of the NESOM-based kineti
theory @9,17,18,29# we find that

d

dt
E1~ t !5J1

~2!~ t !,
d

dt
E2~ t !5J2

~2!~ t !, ~B1!

where the collision operatorJ(2) is given by

J1~2!
~2! ~ t !5E

2`

0

dt8eet8E dG1dG2

3ˆH8~ t8!0 , $H8,H01%‰r̄1~G1 ,G2ut,0!, ~B2!

where subindex zero indicates an evolution in time un
H0 , and, we recall,« is a positive infinitesimal that goes t
zero after the calculation of the average has been perform
G1 andG2 are phase points in the phase space of each
system. After some lengthy but straightforward algebra,
find that

J1
~2!~ t !5E

2`

0

dt8e«t8E dG1E dG2H (
j ,m,n

G j mG j m

3@XmXj cos~v j t8!cos~Vmt8!

1PmXnVm
21 cos~v j t8!sin~Vmt8!#

2 (
j ,k,m

G j mGkmVm
21@pjxk cos~vkt8!sin~Vmt8!

1pj pkvk
21 sin~vkt8!sin~V j t8!#J r̄1~G1 ,G2ut,0!,

~B3!

where x, p, X, and P are given at timet850. A similar
equation follows forJ2

(2)(t) which we omit for the sake o
brevity. The average values that appear in Eq.~B3! are
evaluated to obtain that

^pjxkut&50, ^pj pkut&5d jkb I1
21~ t !, ~B4!

^PmXnut&50, ^XmXvut&5dmnVm
22b I2

21~ t !, ~B5!

and, introducing these results into Eq.~B1!, we find that
e-

se

r

d;
b-
e

d

dt
E1~ t !5

N

t1
@b I1

21~ t !2b I2
21~ t !#, ~B6!

d

dt
E2~ t !52

d

dt
E1~ t !, ~B7!

where

N

t1
5

p

2 (
j ,m

G j m
2

v j
2 d~v j2Vm!, ~B8!

and the final form of Eq.~B7! is a result of the conservatio
of energy in the global system. Moreover, taking into a
count Eqs.~11!, we have a closed system of two equatio
for the two Lagrange parametersb I1 andb I2 .

2. Second description†cf. Eq. „15…‡

The calculation runs quite similarly to the previous on
and we omit the details for the sake of brevity, only notici
that the average values of the basic variables in terms of
Lagrange multipliers are

E1~ t !5
N

b II 1~ t !
1(

j

1
2 @ p̃ j

2~ t !1v j
2x̃ j

2~ t !#, ~B9!

E2~ t !5
N8

b II 2~ t !
, ~B10!

x̃ j~ t !52s j I I ~ t !uv j
2b II 1~ t !, ~B11!

p̃ j~ t !52g j I I ~ t !ub II 1~ t !. ~B12!

APPENDIX C: QUANTUM-MECHANICAL APPROACH

In a quantal approach the two descriptions of Sec. II a
in terms of the dynamical quantities, in the first case@cf. Eq.
~9!# of the Hamiltonian operators

Ĥ015(
j

\v j~aj
†aj1

1
2 !, ~C1!

Ĥ025(
m

\vm~bm
† bm1 1

2 !, ~C2!

wherea (a†) and b (b†) are annihilation and creation op
erators in the corresponding states. In the second case@cf.
Eq. ~15!#, besides the two Hamiltonians above, are incorp
rated the quantitiesaj and aj

† , which, through appropriate
linear combinations, produce the operators for coordin
and momentum of the oscillator in the second quantizat
representation. The auxiliary coarse-grained statistical op
tors are, in this case,

r̄ I~ t,0!5exp$2f I~ t !2b1I~ t !Ĥ012b2I~ t !Ĥ02%, ~C3!
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r̄ II ~ t,0!5expH 2f II ~ t !2b1II ~ t !Ĥ012b2II ~ t !Ĥ02

2S (
j

f j~ t !aj1H.c.D J , ~C4!

wheref, b, and f are the corresponding Lagrange multip
ers. The macrovariables are

E1~ t !5Tr$Ĥ01r̄ I~ t,0!%, E2~ t !5Tr$Ĥ02r̄1~ t,0!%
~C5!

in the first description, and

E1~ t !5Tr$Ĥ01r̄ II ~ t,0!%, E2~ t !5Tr$Ĥ02r̄ II ~ t,0!%,
~C6!

in the second, together with

^aj ut&5Tr$aj r̄ II ~ t,0!%, ^aj ut&* 5Tr$aj
†r̄ II ~ t,0!%,

~C7!

It ought to be noted that the statistical operatorr̄ II (t,0) of
Eq. ~C4! can be expressed in terms of only the populat
operators for a new set of quantities, sayã, once the
Glauber-like transformation

aj5aj1^aj ut& ~C8!

is performed. The calculations are then greatly simplifi
and it can be shown that

ñ j5Tr$ã j
†ã j r̄2~ t,0!%5@exp~b1I~ t !\v j !21#211 z^aj ut& z2,

~C9!

^aj ut&52 f j~ t !/b1II ~ t !\v j . ~C10!
of

,

-

-

yn
-

-

n

,

Using the results listed above, after some algebra, the dif
ent statistical-thermodynamic functions can be calculated
obtain in the first description that

E1 /N5 1
2 \v0coth~ 1

2 b1I\v0!, ~C11!

f I /N52 ln@2sinh~ 1
2 b1I\v0!#, ~C12!

S̄I /N5~f/N!1b1I~E/N!

52 ln@2sinh~ 1
2 b1II \v0!#

1 1
2 b1II \v0 coth~ 1

2 b1II \v0!. ~C13!

In the derivation of these equations, we have taken a uni
frequency for all the oscillators, and the second system
taken as an ideal reservoir~see the main text!. In the second
description, we find that

E1 /N5 1
2 \v0coth~ 1

2 b1II \v0!1b1II
22~L/kB

2 !, ~C14!

f II /N52 ln@2sinh~ 1
2 b1II \v0!#2b1II

21~L/kB
2 !,

~C15!

S̄II /N52 ln@2sinh~ 1
2 b1II \v0!#

1 1
2 b1II \v0 coth~ 1

2 b1II \v0!, ~C16!

whereL5Dv/N and

Dv5kB
2(

j
u f j u2. ~C17!

We use these results in the numerical calculations, proce
ing in the same way as done in the classical approach.
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York, 1951!; F. Schlöge, Phys. Rep.62, 267 ~1980!; J. N.
Kapur and H. K. Kesavan,Entropy Optimization Principles
J.

with Applications~Academic, San Diego, CA, 1992!.
@22# R. Balian, Y. Alhassid, and H. Reinhardt, Phys. Rep.131, 1

~1986!.
@23# E. T. Jaynes, Am. J. Phys.33, 391 ~1965!.
@24# E. T. Jaynes, inMaximum Entropy and Bayesian Method,

edited by G. J. Erickson and C. R. Smith~Kluwer, Dordrecht,
1988!.

@25# S. A. Hassan, A. R. Vasconcellos, and R. Luzzi~unpublished!.
@26# H. Atlan, Entre le Cristal et la Fume´e ~Seuil, Paris, 1986!.
@27# I. Prigogine and I. Stengers,Order Out of Chaos~Bantam,

New York, 1984!.
@28# R. Courant and D. Hilbert,Methods of Mathematical Physic

~Wiley-Interscience, New York, 1953!, Vol. I, pp. 184–186.
@29# V. P. Kalashnikov, Math. Theor. Phys.34, 263 ~1978!.


